Use of a food and drug administration-approved type 1 diabetes mellitus simulator to evaluate and optimize a proportional-integral-derivative controller.
نویسندگان
چکیده
BACKGROUND Clinical studies have shown that the Medtronic proportional-integral-derivative (PID) control with insulin feedback (IFB) provides stable 24 h glucose control, but with high postprandial glucose. We coupled this algorithm to a Food and Drug Administration-approved type 1 diabetes mellitus simulator to determine whether a proportional-derivative controller with preprogrammed basal rates (PDBASAL) would have better performance. METHODS We performed simulation studies on 10 adult subjects to (1) obtain the basal profiles for the PDBASAL controller; (2) define the pharmacokinetic/pharmacodynamic profile used to effect IFB, (3) optimize the PID and PDBASAL control parameters, (4) evaluate improvements obtained with IFB, and (5) develop a method to simulate changes in insulin sensitivity and assess the ability of each algorithm to respond to such changes. RESULTS PDBASAL control significantly reduced peak postprandial glucose [252 (standard error = 11) versus 279 (14) mg/dl; p < .001] and increased nadir glucose [102 (3) versus 92 (3) mg/dl; p < .001] compared with PID control (both implemented with IFB). However, with PDBASAL control, fasting glucose remained elevated following a 30% decrease in insulin sensitivity [156 (6) mg/dl; different from the target of 110 mg/dl; p < .001] and remained below target following a 30% increase in insulin sensitivity [84 (2) mg/dl; p < .001]. In both cases, PID control returned glucose levels to target. CONCLUSIONS PDBASAL provides better postprandial glucose control than PID but is not appropriate for subjects whose basal requirements change with insulin sensitivity. Simulations used to compare different control strategies should assess this variability.
منابع مشابه
Quadrotor Control Using Fractional-Order PI^λ D^μ Control
Quadrotor control has been noted for its trouble as the consequence of the high maneuverability, system nonlinearity and strongly coupled multivariable. This paper deals with the simulation depend on proposed controller of a quadrotor that can overcome this trouble. The mathematical model of quadrotor is determined using a Newton-Euler formulation. Fractional Order Proportional Integral Derivat...
متن کاملOptimal intelligent control for glucose regulation
This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...
متن کاملA closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism.
BACKGROUND Most closed-loop insulin delivery systems rely on model-based controllers to control the blood glucose (BG) level. Simple models of glucose metabolism, which allow easy design of the control law, are limited in their parametric identification from raw data. New control models and controllers issued from them are needed. METHODS A proportional integral derivative with double phase l...
متن کاملTuning of Excitation and TCSC -Based Stabilizers for Multimachine Power System
In this paper, tuning of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) is studied. The analysis of mode controllability is used to select the effective location for TCSC. The performances of TCSC equipped with a proportional-integral-derivative controller (P-I-D controller) and proportional-integral-derivative power system stabilizer (P-I-D PSS) are investigated...
متن کاملاثر پارامتر شیب کف بر تعیین بهینه ضرایب و عملکرد کنترلکننده PID در کانالهای آبیاری
Modernization of irrigation canals as an operation improvement tool is essential to promote the performance of canal networks and indeed requires control systems. Proportional integral derivative (PID) algorithms have more applications than the other controllers in different places of the world, but tuning these controllers for different hydraulic conditions of canals is considered as a major p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of diabetes science and technology
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012